JL AUDIO
JL AUDIO Fathom® CTS-113-ST575-13TW5H 13.5" (345 mm) Custom Theater Subwoofer, 5.75" (146 mm) Deep Enclosure
AVAILABILITY : In Store Pick Up Only
Custom Theater Subwoofer System with Single 13.5" (345 mm) Subwoofer, 5.75" (146 mm) Deep Enclosure
Born from JL Audio’s revolutionary Fathom® in-wall subwoofer system, CTS subwoofers are designed to deliver uncompromising bass performance for virtually any custom integrated application.
Centered on a groundbreaking 13.5" thin-line driver, all CTS enclosures are critically constructed with extensive internal bracing aimed at improving rigidity, while keeping a low profile and minimal wall thickness. Offered in five variants, each sealed enclosure features medium-density fiberboard (MDF) construction with reinforced areas to facilitate direct-to-frame mounting.
The CTS-113-ST575-13TW5H subwoofer system is driven by a rack-mountable, purpose tuned amplifier, capable of delivering up to 1000 watts of clean power. JL Audio’s powerful DSP engine is also on hand, including our exclusive Digital Automatic Room Optimization (D.A.R.O.) system to ensure a smooth response, even in challenging rooms.
Crafted for the most demanding home theater or music system applications, Fathom CTS subwoofers are engineered to deliver legendary JL Audio bass performance and fidelity.
- Includes black steel mesh grille
- Enclosure finish: flat black (hidden from view when installed)
- Enclosure construction: computer numerical control-cut high-grade MDF
Enclosure Type | Sealed |
Enclosure Finish | Black Texture-Coated |
Frequency Response (Anechoic) | 28 Hz - 117 Hz (± 1.5 dB), –3dB at 25 Hz / 123 Hz, –10dB at 22 Hz / 150 Hz |
Effective Piston Area (Sd) | 98.26 sq in / 0.0634 sq m |
Effective Displacement | 147.3 cu in / 2.41 L |
Width (W) | 23.94 in / 608 mm |
Height (H) | 23.94 in / 608 mm |
Depth (D) | 5.75 in / 146 mm |
Dynamic Motor Analysis - DMA Optimized Motor
Summary:
JL Audio's proprietary Dynamic Motor Analysis system is a powerful suite of FEA-based modeling systems, first developed by JL Audio in 1997 and refined over the years to scientifically address the issue of speaker motor linearity. This leads to vastly reduced distortion and faithfully reproduced transients... or put simply: tight, clean, articulate bass.
Detailed Information:
Since 1997, JL Audio has been at the forefront of Finite Element Analysis-based modeling of loudspeaker motors and suspensions. This research is aimed at decoding what we refer to as the "Loudspeaker Genome"... a project aimed at understanding the true behavior of loudspeakers under power and in motion. A major component of this integrated system is DMA (Dynamic Motor Analysis). Starting with the 15W3 and the W7 Subwoofers in the late 1990's and early 2000's, DMA has played an important role in the design of all JL Audio woofers sold today, including our component woofers.
DMA is a Finite Element Analysis (FEA)-based system, meaning that it takes a large, complex problem, breaks it down into small solution elements for analysis and then assembles the data to form an accurate, "big-picture" solution. DMA's breakthrough is that it actually considers the effects of power through the coil as well as coil/cone position within the framework of a time-domain analysis. This gives us a highly accurate model of a speaker's actual behavior under real power, something that the traditional Thiele-Small models or other low power measurements cannot do. Because DMA does not rely on a steady-state model, it is able to consider shifts in the circuit elements being analyzed. These modeling routines are intense, requiring hours to run for a whole speaker.
DMA is able to analyze the real effects of fluctuating power and excursion upon the magnetic circuit of the motor, specifically the dynamic variations of the "fixed" magnetic field. This delivers intensely valuable information compared to traditional modeling, which assumes that the "fixed" field produced in the air gap by the magnet and the motor plates is unchanging. DMA not only shows that this "fixed" field changes in reaction to the magnetic field created by current flowing through the voice coil, but it helps our engineers arrive at motor solutions that minimize this instability. Analyzing this behavior is critical to understanding the distortion mechanisms of a speaker motor and sheds light on the aspects of motor design that determine truly linear behavior:
- Linear motor force over the speaker's operational excursion range
- Consistent motor force with both positive and negative current through the coil
- Consistent motor force at varying applied power levels
Our ability to fully analyze these aspects of motor behavior allows our transducer engineers to make critical adjustments to motor designs that result in extremely linear, highly stable dynamic loudspeaker motor systems.
The payoff is reduced distortion, improved transient performance and stellar sound quality.
Floating Cone Attach Method - FCAM™
Summary:
This assembly technique, conceived by JL Audio, ensures proper surround geometry in the assembled speaker for better excursion control and dynamic voice coil alignment.
Detailed Information:
JL Audio's patented FCAM™ technology is an innovative method of bonding the surround/cone assembly to the voice coil former/spider assembly. This feature helps ensure concentricity of the surround, spider and voice coil without torquing the suspension to achieve it. This allows for the inevitable, slight variations in production part dimensions without having them negatively impact the integrity of the suspension and coil-centering at high excursions.
Concentric Tube Suspension
Summary:
Our Concentric Tube Suspension™ technology delivers unprecedented excursion in a low-profile woofer.
Detailed Information:
The biggest challenge in any low-profile woofer design is to create enough mechanical clearance for the speaker to generate enough excursion to meet its output and low-frequency extension goals. Since these goals were very ambitious in the development of JL Audio's low profile woofers, achieving them required development of a new suspension architecture.
JL Audio's solution employs a molded structure which spans over the edge of the motor system, supporting the spider on the outside of the motor's boundaries and the large diameter voice coil on the inside. The large diameter voice coil permits the magnet to sit inside it, rather than surrounding the coil as is typical in most woofers.
The concentric tube structure and the elimination of a conventional top-plate helps us place the motor system higher up into the cone body's space to further compress depth, while still permitting excellent mechanical excursion.
Built in U.S.A. with Global Components
Summary:
JL Audio's Miramar, Florida loudspeaker production facility is one of the most advanced in the world.
Detailed Information:
At a time when most audio products are built overseas, JL Audio’s commitment to in-house loudspeaker production continues to grow. To pull this off in a competitive world market, our production engineering team has created one of the world’s most advanced loudspeaker assembly facilities and established a global network of quality component suppliers who build to our specifications. This, combined with our commitment to state-of-the-art assembly technology, allows our skilled workforce to efficiently build JL Audio products to extremely high quality standards, right here in the U.S.A.
Since most of our premium loudspeakers incorporate proprietary, patented technologies requiring specific assembly techniques, we find it is vital that the people who designed them have close access to the people manufacturing them. The following JL Audio products are built in our Miramar, Florida factory, with global components:
- Subwoofers: W7, W6v3, TW5v2, TW3, TW1, W3v3
- Enclosed Car Subwoofers: Stealthbox®, PowerWedge™, ProWedge™, H.O. Wedge™ & MicroSub™ Enclosed Subwoofers
- Marine Loudspeakers, Marine Subwoofers and Marine Enclosed Loudspeakers
- Home Subwoofers: Dominion™, E-Sub, Fathom® and Gotham®